Возможно ли путешествие во времени

Вопросы

Просто, чтобы дать вам представление о том, как далеко на самом деле находится ядро галактики, рассмотрим тот факт, что ближайшая к Земле звезда находится на расстоянии 4,3 световых лет, а Вояджер (самая дальняя рукотворная вещь) прошли только половину расстояния до сих пор.

Возможно ли путешествие во времени?

Что такое путешествие во времени? Проще говоря, путешествие во времени — это концепция движения между определенными моментами времени, в основном человеком или гипотетическим устройством, известным как машина времени. Машина времени может быть любой формы и размера, в форме автомобиля или портала, соединяющего определенные отдаленные точки в пространстве-времени.

В течение многих лет концепция путешествий во времени была основным продуктом научно-фантастической литературы. Будь то серия «Звездный путь», «Доктор Кто» или «Назад в будущее» 1985 года, где мы видим, как ученые находят способ путешествовать во времени, но на самом деле все гораздо сложнее, даже сама концепция противоречива. Научное сообщество разделяет вопрос о том, возможны ли путешествия во времени или нет, но кто не хотел бы разбираться в своем прошлом или разгадывать будущее. Теперь вопрос, действительно ли это осуществимо, возможно ли путешествие во времени? Давайте разберемся.

Что такое время?

До Альберта Эйнштейна мы думали, что время — это постоянная сущность, как и предполагает нормальная жизнь, но он доказал, что время на самом деле относительное, то есть время течет с разной скоростью для людей, которые движутся относительно друг друга. Согласно Эйнштейну, время — это «четвертое измерение».

Предположим, что вы и ваш двоюродный брат решили синхронизировать время в обычных часах, прежде чем покинуть Землю в космическом шаттле. Путешествуя со скоростью 30000 км / ч относительно Земли, вы решили сделать несколько оборотов вокруг планеты Земля, прежде чем вернуться на землю. После приземления, если вы сравните время ваших часов с временем вашего двоюродным братом, вы обнаружите небольшое отклонение во времени. Это изменение называется замедлением времени.

Один практический пример замедления времени испытывают космонавты, когда они возвращаются на Землю, проведя 6 месяцев на Международной космической станции. Находясь на орбите вокруг Земли на расстоянии около 400 км, астронавты были в возрасте на 0,007 секунды меньше, чем те из нас, кто был здесь на Земле.

Увеличение дилатации времени

Это может быть незначительным, но можно ощутить чрезмерный эффект замедления времени, если он приблизится к скорости света. Теоретически, замедление времени практически ничтожно до 50% скорости света и дает небольшой эффект при 75%, но после этого оно увеличивается в геометрической прогрессии.

Теория специальной теории относительности учит нас тому, как время ускоряется или замедляется в зависимости от вашей относительной скорости к кому-то или чему-то еще. При скорости света внутри космического корабля вы будете стареть намного медленнее, чем ваш брат здесь, на Земле.

Вы можете подумать, действительно ли это путешествие во времени? Что ж! Да. В соответствии с самой природой пространства-времени, вернувшись сюда на Землю после путешествия на 90% скорости света, вы будете в 3 раза моложе людей на Земле, а это означает, что вы путешествовали на годы вперед относительно времени и пространства. Рассмотрим один пример из межзвездного фильма Кристофера Нолана. В поисках подходящей планеты для людей команда Купера достигла массивной водной планеты, которая заперта очень близко к сверхмассивной черной дыре.

С массой, эквивалентной 100 000 000 солнц и скоростью вращения почти 99,8% скорости света, сверхмассивная черная дыра или Гаргантюа заставила время замедляться до крайних пределов, так что один час на планете равен 7 лет на корабле (космический корабль Endurance). Вернувшись на родной корабль (всего через 3 часа), они обнаружили, что их друг-ученый постарел на 23 земных года.

Нет, это не просто выдумка, это действительно то, как это могло бы произойти, если бы это была настоящая жизнь. Технически, они путешествовали на 23 года впереди этих людей на Земле. До сих пор мы исследовали саму возможность путешествовать в будущее, но как насчет нашего прошлого?

Путешествие быстрее света

Технически, теория относительности Эйнштейна позволяет нам путешествовать назад во времени. Но физическое достижение этих математических уравнений может оказаться невозможным в ближайшем будущем. Это может стать возможным, если мы достигнем скорости, превышающей скорость света, которая составляет около 300 000 км/с (299 792 км/с, если быть точным) в вакууме.

Но опять же, уравнения Эйнштейна говорят нам, что объект может достичь скорости света, только если он имеет бесконечную массу и нулевую длину, что, кстати, невозможно в реальном мире. Хотя многие исследователи считают, что уравнения Эйнштейна могут быть изменены в дальнейшем.

Создание «червоточин» — еще один возможный способ путешествий во времени. Концепция проходимой червоточины подтверждается теорией общей теории относительности. Хотя ученый не нашел червоточины, создание червоточины возможно только в присутствии «экзотической материи» с отрицательной массой / энергией.

Дедушка парадокс

Изображение предоставлено BrightR / Wikimedia Commons

Концепция путешествия во времени в прошлое может привести нас к различным парадоксам и несоответствиям. Одним из таких является парадокс знаменитого деда. Представьте, что вы нашли способ вернуться в прошлое и решили убить одного из своих родителей или деда, не спрашивайте меня, почему. Поэтому, если бы вы убили своего дедушку в прошлом, ваш отец никогда бы не родился, как и вы, следовательно, ваша жизнь навсегда изменилась.

Некоторые ученые считают, что даже если вы не родитесь в нынешней вселенной, вы все равно родитесь в другой. В то время как другие говорят, что вероятность возникновения таких событий (которые меняют прошлое или вызывают парадокс) равна нулю (принцип Новикова).

К сожалению, Марти – очень буквальный парень, и, когда мы сказали, что он точно знает, где будет находиться его дед, это не было преувеличением. Марти приземляется точно в том месте, где должен был быть его дед, с предсказуемыми результатами. После быстрого анализа ДНК, чтобы убедиться, что это действительно его дед, Марти терпеливо ждёт своего исчезновения…

Что такое «парадокс убитого дедушки», и почему он так важен?

Парадокс убитого дедушки излагает гипотетическую ситуацию, в которой путешественник во времени отваживается вернуться в прошлое только для того, чтобы непреднамеренно вызвать событие, которое приводит к тому, что путешественник во времени вообще никогда не существовал (обычно случайная смерть дедушки) или какое-то другое событие, которое делает путешествие невозможным. Парадокс возникает потому, что если путешественник во времени никогда не существовал, как он мог отправиться в прошлое, чтобы совершить отцеубийство? Таким образом, сама идея путешествия во времени поднимает возможность нарушения причинности – причина всегда должна предшествовать её следствию.

Фрай, неуклюжий главный герой Футурамы Мэтта Грейнинга, имел довольно неудачную встречу со своими дедушкой и бабушкой в титулованном эпизоде «Розуэлл, который хорошо кончается»

Чтобы рассмотреть этот парадокс, давайте представим себе ситуацию, в которой одарённый молодой изобретатель Марти создаёт машину времени в 2018 году. Поскольку Марти никогда не видел своего деда, он решает совершить путешествие в прошлое, чтобы встретиться с ним. После тщательного исследования Марти выясняет, где именно будет находиться его дед, ещё молодой и бездетный, 23 ноября 1963 года. Он входит в свою машину и начинает путешествие в прошлое.

Набросок путешествия Марти, если мы допустим существование только одной мировой линии

К сожалению, Марти – очень буквальный парень, и, когда мы сказали, что он точно знает, где будет находиться его дед, это не было преувеличением. Марти приземляется точно в том месте, где должен был быть его дед, с предсказуемыми результатами. После быстрого анализа ДНК, чтобы убедиться, что это действительно его дед, Марти терпеливо ждёт своего исчезновения…

Историю подхватили многие мировые СМИ: публикации о Карлсине появились в The New Yorker, The Guardian, The Scotsman. Но больше всего загадочная история Эндрю Карлсина удивила не читателей газет, а сотрудников ФБР и комиссии по ценным бумагам и биржам. Журналисты их буквально замучили просьбами дать комментарий о «путешественнике во времени». Отказ спецслужб комментировать случай Карлсина только подзадорил конспирологов, уверенных, что власти просто скрывают правду.

Материалы по теме

«Мы не боимся ядерных бомб»

Тайтор окончательно исчез из интернета в 2005 году, когда его прогнозы один за другим оказывались ложными. В 2008 году частные детективы установили, что ни самого Джона Тайтора, ни его семьи не существовало. Единственным человеком, подтвердившим существование Тайтора, был его адвокат Ларри Хабер. Некоторые поклонники до сих пор верят в реальность Тайтора, а несбывшиеся предсказания объясняют временным парадоксом: раз он о них рассказал, то они и не произошли. Хаберы же просто были друзьями семьи гостя из будущего, у которых он остановился, — следовательно, с их компьютера он и выходил в интернет.

Известен еще один случай. В 2011 году женщина пошла в магазин Mothercare в Ливерпуле, чтобы купить подарок для своей сестры. Но ее банковская карта не сработала, поэтому она вернулась домой и рассказала обо всем своей матери. И когда женщины вновь пошли в этот магазин – его не было. На месте Mothercare располагался банк.

3. И единственное, в котором мы можем перемещаться только в одном направлении

Как мы уже сказали, три из существующих измерений пространственные: высота, ширина, глубина. И в любом из этих измерений мы можем передвигаться в двух направлениях, а также иметь бесконечное количество позиций.

Четвертое измерение – время. И в этом четвертом измерении мы гораздо более ограничены в своих движениях, ведь мы не можем путешествовать назад. Это единственное измерение, в котором мы можем двигаться только вперед с течением дней.

Уравнение Эйнштейна. Оно связывает кривизну пространства-времени в левой части формулы (выраженную через свертку тензора Риччи Rμν, метрический тензор gμν и космологическую постоянную Λ) с тензором энергии-импульса Tμν — в правой

Современное состояние

Но универсальной теории квантовой гравитации пока нет, и существование замкнутых времениподобных кривых все еще считается возможным. И чтобы не отменять из-за каких-то сомнительных кривых всю общую теорию относительности целиком, но при этом не создавать дополнительных надстроек в виде новых постулатов и запрещающих гипотез, ученые пытаются оправдать существование этих кривых на основе фундаментальных законов и принципов самой теории. В том, что такие кривые в общей теории относительности иногда могут возникать, сомнений нет, но вот когда и в каком виде теория позволяет им появляться, чтобы не противоречить ее базовым принципам, все еще неясно — и пока эти условия возможно сузить.

В 2019 году физики из Австрии, Австралии и Швейцарии смогли в рамках детерминистической парадигмы показать, что идея путешествий во времени (и даже взаимодействия объекта со своим прошлым «я») при определенных условиях не содержит внутренних противоречий и может решить внутренние причинные парадоксы. В сентябре этого года австралийские физики расширили подход от одного частного случая к более общей ситуации, в которой замкнутые кривые остаются совместимыми с детерминизмом и локальной свободой выбора (то есть фактически вписывает путешествия во времени в компатибилистскую картину мира), правда, с широким спектром возможных сценариев.

Чтобы понять суть работы, придется еще немного углубиться в формальную методологию. С математической точки зрения, пространство-время, в котором возможно существование замкнутых времениподобных линий — не глобально гиперболично. То есть точки этого пространства-времени (в отличие от более понятного пространства-времени с причинной связью) могут оказываться на краю — в сингулярности или бесконечности. В таком пространстве-времени нет поверхности Коши, на которой можно было бы задать начальные условия, однозначно предопределяющие все дальнейшие физические процессы.

Слева: семейство инвариантных гипербол, которые объединяют множества точек в двумерном пространстве x-ct, отделенных одинаковым пространственно-временным интервалом от начала координат. Справа: примеры инвариантных гиперболоидов в трехмерном пространстве x-y-ct

Оцените статью
Добавить комментарий